Generative Adversarial User Privacy in Lossy Single-Server Information Retrieval
Document Type
Article
Publication Date
1-1-2022
Abstract
We propose to extend the concept of private information retrieval by allowing for distortion in the retrieval process and relaxing the perfect privacy requirement at the same time. In particular, we study the trade-off between download rate, distortion, and user privacy leakage, and show that in the limit of large file sizes this trade-off can be captured via a novel information-theoretical formulation for datasets with a known distribution. Moreover, for scenarios where the statistics of the dataset is unknown, we propose a new deep learning framework by leveraging a generative adversarial network approach, which allows the user to learn efficient schemes from the data itself. We evaluate the performance of the scheme on a synthetic Gaussian dataset as well as on the MNIST, CIFAR-10, and LSUN datasets. For the MNIST, CIFAR-10, and LSUN datasets, the data-driven approach significantly outperforms a nonlearning-based scheme which combines source coding with the download of multiple files.
Identifier
85137927594 (Scopus)
Publication Title
IEEE Transactions on Information Forensics and Security
External Full Text Location
https://doi.org/10.1109/TIFS.2022.3203320
e-ISSN
15566021
ISSN
15566013
First Page
3495
Last Page
3510
Volume
17
Recommended Citation
Weng, Chung Wei; Yakimenka, Yauhen; Lin, Hsuan Yin; Rosnes, Eirik; and Kliewer, Jorg, "Generative Adversarial User Privacy in Lossy Single-Server Information Retrieval" (2022). Faculty Publications. 3376.
https://digitalcommons.njit.edu/fac_pubs/3376