"Inter-Animal Variability in Activity Phase Is Constrained by Synaptic " by Haroon Anwar, Diana Martinez et al.
 

Inter-Animal Variability in Activity Phase Is Constrained by Synaptic Dynamics in an Oscillatory Network

Document Type

Article

Publication Date

7-1-2022

Abstract

The levels of voltage-gated and synaptic currents in the same neuron type can vary substantially across indi-viduals. Yet, the phase relationships between neurons in oscillatory circuits are often maintained, even in the face of varying oscillation frequencies. We examined whether synaptic and intrinsic currents are matched to maintain constant activity phases across preparations, using the lateral pyloric (LP) neuron of the stomatogas-tric ganglion (STG) of the crab, Cancer borealis. LP produces stable oscillatory bursts on release from inhibi-tion, with an onset phase that is independent of oscillation frequency. We quantified the parameters that define the shape of the synaptic current inputs across preparations and found no linear correlations with volt-age-gated currents. However, several synaptic parameters were correlated with oscillation period and burst onset phase, suggesting they may play a role in phase maintenance. We used dynamic clamp to apply artifi-cial synaptic inputs and found that those synaptic parameters correlated with phase and period were ineffec-tive in influencing burst onset. Instead, parameters that showed the least variability across preparations had the greatest influence. Thus, parameters that influence circuit phasing are constrained across individuals, while those that have little effect simply co-vary with phase and frequency.

Identifier

85134624444 (Scopus)

Publication Title

Eneuro

External Full Text Location

https://doi.org/10.1523/ENEURO.0027-22.2022

e-ISSN

23732822

PubMed ID

35817566

Issue

4

Volume

9

Grant

R01MH060605

Fund Ref

National Institutes of Health

This document is currently not available here.

Share

COinS