A molecular orbital study of tambjamine E and analogues
Document Type
Article
Publication Date
5-20-2004
Abstract
Hartree-Fock (HF/6-31G*), electron correlation (MP2/6-31G*, B3LYP/6-31G*, B3LYP/6-31G*(d,p)), and semiempirical (AM1, AM1/SM5.4) calculations were carried out on the DNA AT-specific intercalator tambjamine E in order to investigate the effect of protonation, side chains, electron correlation, and solvent on the inter-ring NCCN rotational barrier and relative planarity of the A and B rings. These properties relate to the flexibility of tambjamine and the ease by which it could adjust its inter-ring twist angle to adopt the propeller twist of DNA in order to form a nonclassical intercalation complex. The E configuration of protonated tambjamine was found to be more stable than the Z due to solvent stabilization and intramolecular hydrogen bonding. Inclusion of electron correlation increased the NCCN rotational barrier by about 2 kcal/mol. Solvent and the presence of the enamine side chain were shown to have a significant effect in lowering the NCCN rotational barrier. For the E configuration of protonated tambjamine, both the Hartree-Fock (HF) and density functional theory (DFT) methods predicted nonplanar minima around 20°, whereas DFT calculated the global energy minimum (GEM) to be planar (180°) in contrast to the HF nonplanar GEM (166°). However, both the HF and DFT results showed that there are broad regions (ZNCCN = 0-30° and 150-180°) in which there is a minimal energetic cost for the E configuration of protonated tambjamine to adopt a nonplanar conformation. Such flexibility of tambjamine around the inter-ring bond could allow the molecule to adjust its NCCN angle to fit the propeller twist of the DNA base pair in order to form a nonclassical intercalation complex.
Identifier
84962345498 (Scopus)
Publication Title
Journal of Physical Chemistry A
External Full Text Location
https://doi.org/10.1021/jp049758l
ISSN
10895639
First Page
4542
Last Page
4550
Issue
20
Volume
108
Recommended Citation
Skawinski, William J.; Venanzi, Thomas J.; and Venanzi, Carol A., "A molecular orbital study of tambjamine E and analogues" (2004). Faculty Publications. 20352.
https://digitalcommons.njit.edu/fac_pubs/20352
