Achieving 100% success ratio in finding the delay constrained least cost path

Document Type

Conference Proceeding

Publication Date

12-1-2004

Abstract

In this paper, we introduce an Iterative All Hops k-shortest Paths (IAHKP) algorithm that is capable of iteratively computing all hops k-shortest path (AHKP) from a source to a destination. Based on IAHKP, a high performance algorithm, Dual Iterative All Hops k-shortest Paths (DIAHKP) algorithm, that can achieve 100% success ratio in finding the Delay Constrained Least Cost (DCLC) path with very low average computational complexity is proposed. The underlining concept is that since DIAHKP is a &-shortest-paths-based solution to DCLC, implying that its computational complexity increases with k, we can minimize its computational complexity by adaptively minimizing k, while achiving 100% success ratio in finding the optimal feasible path. Through extensive analysis and simulations, we show that DIAHKP is highly effective and flexible. By setting a very small upper bound to k (k=1,2), DIAHKP still can achieve very satisfactory performance. With only an average computational complexity of twice that of the standard Bellman-Ford algorithm, DIAHKP achieves 100% success ratio in finding the optimal feasible path in the typical 32-node network. © 2004 IEEE.

Identifier

18144414250 (Scopus)

Publication Title

Globecom IEEE Global Telecommunications Conference

First Page

1505

Last Page

1509

Volume

3

This document is currently not available here.

Share

COinS