Fluxon pinning in the nodeless pairing state of superconducting YBa 2Cu3O7
Document Type
Conference Proceeding
Publication Date
1-1-2005
Abstract
Positive-muon spin rotation (μ+SR) spectroscopy and magnetic moment measurements were used to probe fluxon (or vortex) formation in the superconducting mixed state of a high-purity YBa2Cu3O 7 crystal. Random potentials caused by crystal-lattice defects pin fluxons. A fluxon lattice forms in an external magnetic field, and changes of thermal activation lead to fluxon pinning and depinning. The root second moment of the local magnetic field distribution (σ) determined by μ+SR contains information on the magnetic penetration depth and the pinning. Fluxon pinning leads to temperature-dependent transverse displacements of the fluxons that decrease σ and also fluctuations in the separation between fluxons that tend to increase σ. By accounting for the field-dependent and temperature-activated fluxon disorder, it is found that the experimental results for the penetration depth are consistent with a superconducting order parameter of a strong-coupling two-fluid model, confirming that the superconductivity is nodeless with s-wave superconducting pairing. Quantitative results for fluxon displacements are discussed within the context of the fluxon field-temperature phase diagram.
Identifier
20344383508 (Scopus)
Publication Title
Journal of Electronic Materials
External Full Text Location
https://doi.org/10.1007/s11664-005-0054-0
ISSN
03615235
First Page
474
Last Page
483
Issue
5
Volume
34
Grant
F49620-00-1-0364
Fund Ref
Office of Naval Research
Recommended Citation
Fiory, A. T.; Harshman, D. R.; Jung, J.; Isaac, I. Y.; Kossler, W. J.; Greer, A. J.; Noakes, D. R.; Stronach, C. E.; Koster, E.; and Dow, John D., "Fluxon pinning in the nodeless pairing state of superconducting YBa 2Cu3O7" (2005). Faculty Publications. 19983.
https://digitalcommons.njit.edu/fac_pubs/19983
