"Introducing Engineering Students to Microfluidics and 3D Printing Usin" by Elvan Dogan, Ashish D. Borgaonkar et al.
 

Introducing Engineering Students to Microfluidics and 3D Printing Using Hands-On Activities

Document Type

Article

Publication Date

3-1-2023

Abstract

Microfluidics technology involves the regulation of flow in micron-sized channels for desired reactions, with applications in biological modeling, drug manufacturing, screening of biological agents, and various engineering fluid dynamics-related purposes. Despite its growth and development, microfluidics has not been widely included as a teaching topic in undergraduate engineering education. This manuscript presents a hands-on project-based learning approach that can be easily implemented into core engineering courses, such as fluid mechanics, transport, chemical reactions, and others. Project-based activities presented here have three main parts: material preparation based on synthetic polymers, light-assisted manufacturing of a microfluidic device, and mass transport experiments to observe the fluid behavior. The project leverages 3D printing and the potential to connect students with makerspaces and 3D printing and to get them started on the path to bringing their ideas to life. The paper includes a breakdown of how to access and evaluate these activities. As a result of this hands-on activity, students will understand how fluid mechanics concepts are applied to microfluidics. Students will also learn about a novel interdisciplinary field that is growing rapidly. Engineering technology students will benefit from exposure to the application side of this emerging field through these lab-style activities that they are accustomed to in the majority of their core courses. Finally, the authors hope that such successful integration will encourage faculty to introduce other novel science and engineering topics that are currently only accessible through research experiencebased courses.

Identifier

85174604531 (Scopus)

Publication Title

Journal of Engineering Technology

ISSN

07479964

First Page

40

Last Page

51

Issue

1

Volume

40

Grant

R01-DC018577

Fund Ref

National Institutes of Health

This document is currently not available here.

Share

COinS