Frequency and Color Fusion for Face Verification
Document Type
Article
Publication Date
12-1-2012
Abstract
A face verification method is presented in this chapter by fusing the frequency and color features for improving the face recognition grand challenge performance. In particular, the hybrid color space RIQ is constructed, according to the discriminating properties among the individual component images. For each component image, the frequency features are extracted from the magnitude, the real and imaginary parts in the frequency domain of an image. Then, an improved Fisher model extracts discriminating features from the frequency data for similarity computation using a cosine similarity measure. Finally, the similarity scores from the three component images in the RIQ color space are fused by means of a weighted summation at the decision level for the overall similarity computation. To alleviate the effect of illumination variations, an illumination normalization procedure is applied to the R component image. Experiments on the Face Recognition Grand Challenge (FRGC) version 2 Experiment 4 show the feasibility of the proposed frequency and color fusion method. © Springer-Verlag Berlin Heidelberg 2012.
Identifier
84885613996 (Scopus)
ISBN
[9783642284564]
Publication Title
Intelligent Systems Reference Library
External Full Text Location
https://doi.org/10.1007/978-3-642-28457-1_4
e-ISSN
18684408
ISSN
18684394
First Page
53
Last Page
71
Volume
37
Recommended Citation
Liu, Zhiming and Liu, Chengjun, "Frequency and Color Fusion for Face Verification" (2012). Faculty Publications. 17932.
https://digitalcommons.njit.edu/fac_pubs/17932
