The Finite-Dimensional Moser Type Reduction of Modified Boussinesq and Super-Korteweg-de Vries Hamiltonian Systems via the Gradient-Holonomic Algorithm and Dual Moment Maps. Part I
Document Type
Article
Publication Date
1-1-1997
Abstract
The Moser type reductions of modified Boussinessq and super-Korteweg-de Vries equations upon the finite-dimensional invariant subspaces of solutions are considered. For the Hamiltonian and Liouville integrable finite-dimensional dynamical systems concerned with the invariant subspaces, the Lax representations via the dual moment maps into some deformed loop algebras and the finite hierarchies of conservation laws are obtained. A supergeneralization of the Neumann dynamical system is presented. © 1997 Taylor & Francis Group, LLC.
Identifier
33748579782 (Scopus)
Publication Title
Journal of Nonlinear Mathematical Physics
External Full Text Location
https://doi.org/10.2991/jnmp.1997.4.3-4.21
e-ISSN
17760852
ISSN
14029251
First Page
455
Last Page
469
Issue
3-4
Volume
4
Recommended Citation
Prykarpatsky, A. K.; Hentosh, O. E.; and Blackmore, D. L., "The Finite-Dimensional Moser Type Reduction of Modified Boussinesq and Super-Korteweg-de Vries Hamiltonian Systems via the Gradient-Holonomic Algorithm and Dual Moment Maps. Part I" (1997). Faculty Publications. 16827.
https://digitalcommons.njit.edu/fac_pubs/16827
