1:2 resonance mediated second harmonic generation in a 1-D nonlinear discrete periodic medium
Document Type
Article
Publication Date
1-1-2001
Abstract
We derive traveling wave solutions in a nonlinear diatomic particle chain near the 1:2 resonance (κ*, ω*), where ω* = D(κ*), 2ω* = D(2κ*) and ω = D(κ) is the linear dispersion relation. To leading order, the waves have form ±εsin(κn - ωt) + δsin(2κn - 2ωt), where the near-resonant acoustic frequency ω and the amplitude ε of the first harmonic are given to first order in terms of the wavenumber difference κ - κ* and the amplitude δ of the second harmonic. These traveling wave solutions are unique within a certain set of symmetries. We find that there is a continuous line in parameter space that transfers energy from the first to the second harmonic, even in cases where initially almost all energy is in the first harmonic, connecting these waves to pure optical waves that have no first harmonic content.
Identifier
0035186525 (Scopus)
Publication Title
SIAM Journal on Applied Mathematics
External Full Text Location
https://doi.org/10.1137/S0036139999365341
ISSN
00361399
First Page
1802
Last Page
1815
Issue
5
Volume
61
Recommended Citation
Georgieva, A.; Kriecherbauer, T.; and Venakides, S., "1:2 resonance mediated second harmonic generation in a 1-D nonlinear discrete periodic medium" (2001). Faculty Publications. 15219.
https://digitalcommons.njit.edu/fac_pubs/15219
