Force-freeness of solar magnetic fields in the photosphere

Document Type

Article

Publication Date

3-20-2002

Abstract

It is widely believed that solar magnetic fields are force-free in the solar corona but not in the solar photosphere at all. In order to examine the force-freeness of active region magnetic fields at the photospheric level, we have calculated the integrated magnetic forces for 12 vector magnetograms of three flare-productive active regions. The magnetic field vectors are derived from simultaneous Stokes profiles of the Fe I doublet λλ6301.5 and 6302.5 obtained by the Haleakala Stokes Polarimeter of Mees Solar Observatory, with a nonlinear least-squares method adopted for field calibration. The resulting vertical Lorentz force normalized to the total magnetic pressure force |Fz/Fp| ranges from 0.06 to 0.32 with a median value of 0.13, which is smaller than the values (∼0.4) obtained by Metcalf et al., who applied a weak field derivative method to the Stokes profiles of Na I λ5896. Our results indicate that the photospheric magnetic fields are not so far from force-free as conventionally regarded. As a good example of a linear force-free field, NOAA Active Region 5747 is examined. By applying three different methods (a most probable value method, a least-squares fitting method, and comparison with linear force-free solutions), we have derived relatively consistent linear force-free coefficients for NOAA AR 5747. It is found that the scaled downward Lorentz force (|Fz/Fp|) in the solar photosphere decreases with increasing |α|. Our results also show that the force-freeness of photospheric magnetic fields depends not only on the character of the active region but also on its evolutionary status.

Identifier

0013234203 (Scopus)

Publication Title

Astrophysical Journal

External Full Text Location

https://doi.org/10.1086/338891

e-ISSN

15384357

ISSN

0004637X

First Page

422

Last Page

431

Issue

1 I

Volume

568

This document is currently not available here.

Share

COinS