Discrete models of autocrine cell communication in epithelial layers
Document Type
Article
Publication Date
6-1-2003
Abstract
Pattern formation in epithelial layers heavily relies on cell communication by secreted ligands. Whereas the experimentally observed signaling patterns can be visualized at single-cell resolution, a biophysical framework for their interpretation is currently lacking. To this end, we develop a family of discrete models of cell communication in epithelial layers. The models are based on the introduction of cell-to-cell coupling coefficients that characterize the spatial range of intercellular signaling by diffusing ligands. We derive the coupling coefficients as functions of geometric, cellular, and molecular parameters of the ligand transport problem. Using these coupling coefficients, we analyze a nonlinear model of positive feedback between ligand release and binding. In particular, we study criteria of existence of the patterns consisting of clusters of a few signaling cells, as well as the onset of signal propagation. We use our model to interpret recent experimental studies of the EGFR/Rhomboid/Spitz module in Drosophila development.
Identifier
0037764030 (Scopus)
Publication Title
Biophysical Journal
External Full Text Location
https://doi.org/10.1016/S0006-3495(03)75093-0
ISSN
00063495
PubMed ID
12770871
First Page
3624
Last Page
3635
Issue
6
Volume
84
Grant
DMS-0211864
Fund Ref
National Science Foundation
Recommended Citation
Přibyl, Michal; Muratov, Cyrill B.; and Shvartsman, Stanislav Y., "Discrete models of autocrine cell communication in epithelial layers" (2003). Faculty Publications. 14110.
https://digitalcommons.njit.edu/fac_pubs/14110