Dynamics of the Tachocline
Document Type
Article
Publication Date
12-1-2023
Abstract
The solar tachocline is an internal region of the Sun possessing strong radial and latitudinal shears straddling the base of the convective envelope. Based on helioseismic inversions, the tachocline is known to be thin (less than 5% of the solar radius). Since the first theory of the solar tachocline in 1992, this thinness has not ceased to puzzle solar physicists. In this review, we lay out the grounds of our understanding of this fascinating region of the solar interior. We detail the various physical mechanisms at stake in the solar tachocline, and put a particular focus on the mechanisms that have been proposed to explain its thinness. We also examine the full range of MHD processes including waves and instabilities that are likely to occur in the tachocline, as well as their possible connection with active region patterns observed at the surface. We reflect on the most recent findings for each of them, and highlight the physical understanding that is still missing and that would allow the research community to understand, in a generic sense, how the solar tachocline and stellar tachocline are formed, are sustained, and evolve on secular timescales.
Identifier
85179849850 (Scopus)
Publication Title
Space Science Reviews
External Full Text Location
https://doi.org/10.1007/s11214-023-01027-0
e-ISSN
15729672
ISSN
00386308
Issue
8
Volume
219
Grant
NNX14AB70G
Fund Ref
National Aeronautics and Space Administration
Recommended Citation
Strugarek, Antoine; Belucz, Bernadett; Brun, Allan Sacha; Dikpati, Mausumi; and Guerrero, Gustavo, "Dynamics of the Tachocline" (2023). Faculty Publications. 1305.
https://digitalcommons.njit.edu/fac_pubs/1305