Dynamics of the Tachocline

Document Type

Article

Publication Date

12-1-2023

Abstract

The solar tachocline is an internal region of the Sun possessing strong radial and latitudinal shears straddling the base of the convective envelope. Based on helioseismic inversions, the tachocline is known to be thin (less than 5% of the solar radius). Since the first theory of the solar tachocline in 1992, this thinness has not ceased to puzzle solar physicists. In this review, we lay out the grounds of our understanding of this fascinating region of the solar interior. We detail the various physical mechanisms at stake in the solar tachocline, and put a particular focus on the mechanisms that have been proposed to explain its thinness. We also examine the full range of MHD processes including waves and instabilities that are likely to occur in the tachocline, as well as their possible connection with active region patterns observed at the surface. We reflect on the most recent findings for each of them, and highlight the physical understanding that is still missing and that would allow the research community to understand, in a generic sense, how the solar tachocline and stellar tachocline are formed, are sustained, and evolve on secular timescales.

Identifier

85179849850 (Scopus)

Publication Title

Space Science Reviews

External Full Text Location

https://doi.org/10.1007/s11214-023-01027-0

e-ISSN

15729672

ISSN

00386308

Issue

8

Volume

219

Grant

NNX14AB70G

Fund Ref

National Aeronautics and Space Administration

This document is currently not available here.

Share

COinS