Auditing complex concepts in overlapping subsets of SNOMED.

Document Type

Article

Publication Date

1-1-2008

Abstract

Limited resources and the sheer volume of concepts make auditing a large terminology, such as SNOMED CT, a daunting task. It is essential to devise techniques that can aid an auditor by automatically identifying concepts that deserve attention. A methodology for this purpose based on a previously introduced abstraction network (called the p-area taxonomy) for a SNOMED CT hierarchy is presented. The methodology algorithmically gathers concepts appearing in certain overlapping subsets, defined exclusively with respect to the p-area taxonomy, for review. The results of applying the methodology to SNOMED's Specimen hierarchy are presented. These results are compared against a control sample composed of concepts residing in subsets without the overlaps. With the use of the double bootstrap, the concept group produced by our methodology is shown to yield a statistically significant higher proportion of error discoveries.

Identifier

67349192600 (Scopus)

Publication Title

AMIA Annual Symposium Proceedings AMIA Symposium AMIA Symposium

e-ISSN

1942597X

PubMed ID

18998838

First Page

273

Last Page

277

Grant

R01LM008912

Fund Ref

U.S. National Library of Medicine

This document is currently not available here.

Share

COinS