Nonintegrable perturbations of two vortex dynamics

Document Type

Conference Proceeding

Publication Date

1-1-2008

Abstract

The governing equations of motion of two point vortices in an ideal fluid in the plane has a Hamiltonian formulation that is completely integrable, so the dynamics are regular in the sense that one has quasiperiodic solutions confined to invariant two-dimensional tori accompanied by periodic orbits. Moreover, it is well known that the same is true of the dynamics of two point vortices in an ideal fluid in a standard half-plane (with a straight line boundary). It is natural to ask if this is also the case for half-planes whose boundaries are perturbations of a straight line. We prove here that there are such Hamiltonian perturbations of two vortex dynamics in the half-plane that generate chaotic - and a fortiori nonintegrable - dynamics, thereby answering an open question of rather long standing. Our proof, like most demonstrations of this kind, is based on Melnikov's method. © 2008 Springer.

Identifier

84861139497 (Scopus)

ISBN

[9781402067433]

Publication Title

Solid Mechanics and Its Applications

External Full Text Location

https://doi.org/10.1007/978-1-4020-6744-0_29

ISSN

18753507

First Page

331

Last Page

340

Volume

6

This document is currently not available here.

Share

COinS