A higher-order internal wave model accounting for large bathymetric variations

Document Type

Article

Publication Date

1-1-2009

Abstract

A higher-order strongly nonlinear model is derived to describe the evolution of large amplitude internal waves over arbitrary bathymetric variations in a two-layer system where the upper layer is shallow while the lower layer is comparable to the characteristic wavelength. The new system of nonlinear evolution equations with variable coefficients is a generalization of the deep configuration model proposed by Choi and Camassa [1] and accounts for both a higher-order approximation to pressure coupling between the two layers and the effects of rapidly varying bottom variation. Motivated by the work of Rosales and Papanicolaou [2], an averaging technique is applied to the system for weakly nonlinear long internal waves propagating over periodic bottom topography. It is shown that the system reduces to an effective Intermediate Long Wave (ILW) equation, in contrast to the Korteweg-de Vries (KdV) equation derived for the surface wave case. © 2009 by the Massachusetts Institute of Technology.

Identifier

63849189753 (Scopus)

Publication Title

Studies in Applied Mathematics

External Full Text Location

https://doi.org/10.1111/j.1467-9590.2009.00433.x

e-ISSN

14679590

ISSN

00222526

First Page

275

Last Page

294

Issue

3

Volume

122

This document is currently not available here.

Share

COinS