Studies on scaling of membranes in desalination by direct contact membrane distillation: CaCO3 and mixed CaCO3/CaSO4 systems

Document Type

Article

Publication Date

4-15-2009

Abstract

Scaling of membranes by CaCO3 and CaSO4-CaCO3 is of considerable concern in membrane desalination processes. It is particularly relevant for porous crossflow hollow fiber-based membrane distillation (MD) processes which can achieve high water recovery and can encounter heavy precipitation of scaling salts. Therefore an analysis of the scaling potential for CaCO3 and mixed CaSO4-CaCO3 systems is presented first in terms of the saturation index profiles throughout the crossflow hollow fiber membrane module as a function of the location in the module for feed solutions resulting from high water recovery. Scaling experiments during DCMD with tap water, CaCO3 and mixed CaSO4/CaCO3 were conducted over a wide range of values of saturation index (SI) (10 < SIcalcite < 64, 1.1 < SIGypsum < 1.5) using porous fluorosilicone coated crossflow hollow fiber membrane desalination modules. The effects of flow rates, flow patterns (cross vs. parallel flow) and the nature of the membrane surface on possible scaling scenarios were further investigated for the scaling salt CaSO4. Experimental results at high saturation indices show that even when the precipitation rate was fast in the CaCO3 system at elevated temperatures or high concentrations, no significant loss in water vapor permeation was observed suggesting no effect of scaling on membrane flux. However, for a few of the mixed CaSO4-CaCO3 systems, the water vapor flux dropped somewhat. Possible explanations have been provided and a method to solve this problem has been illustrated. Fast feed flow rate resulted in a shortened induction period. Crossflow flow pattern and the nature of the hydrophobic porous coating on the membrane surface were proven to be helpful in developing the resistance to scaling. Results of modeling show that concentration polarization effects are far more important than temperature polarization effects. © 2009 Elsevier Ltd.

Identifier

62349139976 (Scopus)

Publication Title

Chemical Engineering Science

External Full Text Location

https://doi.org/10.1016/j.ces.2008.12.036

ISSN

00092509

First Page

1844

Last Page

1859

Issue

8

Volume

64

Grant

02-FC-81-0840

Fund Ref

Office of Naval Research

This document is currently not available here.

Share

COinS