Si/SiGe interfaces in three-, two-, and one-dimensional nanostructures and their influence on SiGe light emission
Document Type
Conference Proceeding
Publication Date
1-1-2016
Abstract
The nature of the interfaces between SiGe nanostructures (NSs) and Si in heterostructures strongly affects carrier mobility and recombination for physical confinement in one, two, and three dimensions. The interface sharpness is influenced by many factors including growth conditions, strain, and thermal processing, which can make it difficult to attain the desired structures. This is certainly the case forNS confinement in one dimension. However, axial Si/Ge nanowire (NW) heterojunctions (HJs) with a Si/Ge NW diameter in the range 50-120 nm produce a strong PL signal associated with band-to-band electron-hole recombination at the NW HJ that is attributed to a specific interfacial SiGe alloy composition. For three-dimensional confinement, experiments show that two quite different SiGe NSs incorporated into a Si0.6Ge0.4 wavy structure exhibit an intense PL signal with a characteristic non-exponential decay time that is remarkably shorter (as much as 1000 times) than that found in conventional Si/SiGe NSs.
Identifier
85010737623 (Scopus)
ISBN
[9781623324032, 9781607687610]
Publication Title
Ecs Transactions
External Full Text Location
https://doi.org/10.1149/07234.0007ecst
e-ISSN
19385862
ISSN
19386737
First Page
7
Last Page
25
Issue
34
Volume
72
Grant
ECCS-1027770
Fund Ref
National Science Foundation
Recommended Citation
Lockwood, D. J.; Wu, X.; Baribeau, J. M.; Mala, S. A.; Wang, X.; and Tsybeskov, L., "Si/SiGe interfaces in three-, two-, and one-dimensional nanostructures and their influence on SiGe light emission" (2016). Faculty Publications. 10863.
https://digitalcommons.njit.edu/fac_pubs/10863