Supporting opportunities for context-aware social matching: An experience sampling study

Document Type

Conference Proceeding

Publication Date

5-7-2016

Abstract

Mobile social matching systems aim to bring people together in the physical world by recommending people nearby to each other. Going beyond simple similarity and proximity matching mechanisms, we explore a proposed framework of relational, social and personal context as predictors of match opportunities to map out the design space of opportunistic social matching systems. We contribute insights gained from a study combining Experience Sampling Method (ESM) with 85 students of a U.S. university and interviews with 15 of these participants. A generalized linear mixed model analysis (n=1704) showed that personal context (mood and busyness) as well as sociability of others nearby are the strongest predictors of contextual match interest. Participant interviews suggest operationalizing relational context using social network rarity and discoverable rarity, and incorporating skill level and learning/teaching needs for activity partnering. Based on these findings we propose passive context-awareness for opportunistic social matching.

Identifier

85014741876 (Scopus)

ISBN

[9781450333627]

Publication Title

Conference on Human Factors in Computing Systems Proceedings

External Full Text Location

https://doi.org/10.1145/2858036.2858175

First Page

2430

Last Page

2441

This document is currently not available here.

Share

COinS