The effect of PVDF-TrFE scaffolds on stem cell derived cardiovascular cells

Document Type

Article

Publication Date

7-1-2016

Abstract

Recently, electrospun polyvinylidene fluoride (PVDF) and polyvinylidene fluoride-trifluoroethylene (PVDF-TrFE) scaffolds have been developed for tissue engineering applications. These materials have piezoelectric activity, wherein they can generate electric charge with minute mechanical deformations. Since the myocardium is an electroactive tissue, the unique feature of a piezoelectric scaffold is attractive for cardiovascular tissue engineering applications. In this study, we examined the cytocompatibility and function of pluripotent stem cell derived cardiovascular cells including mouse embryonic stem cell-derived cardiomyocytes (mES-CM) and endothelial cells (mES-EC) on PVDF-TrFE scaffolds. MES-CM and mES-EC adhered well to PVDF-TrFE and became highly aligned along the fibers. When cultured on scaffolds, mES-CM spontaneously contracted, exhibited well-registered sarcomeres and expressed classic cardiac specific markers such as myosin heavy chain, cardiac troponin T, and connexin43. Moreover, mES-CM cultured on PVDF-TrFE scaffolds responded to exogenous electrical pacing and exhibited intracellular calcium handling behavior similar to that of mES-CM cultured in 2D. Similar to cardiomyocytes, mES-EC also demonstrated high viability and maintained a mature phenotype through uptake of low-density lipoprotein and expression of classic endothelial cell markers including platelet endothelial cell adhesion molecule, endothelial nitric oxide synthase, and the arterial specific marker, Notch-1. This study demonstrates the feasibility of PVDF-TrFE scaffold as a candidate material for developing engineered cardiovascular tissues utilizing stem cell-derived cells.

Identifier

84957828149 (Scopus)

Publication Title

Biotechnology and Bioengineering

External Full Text Location

https://doi.org/10.1002/bit.25918

e-ISSN

10970290

ISSN

00063592

PubMed ID

26705272

First Page

1577

Last Page

1585

Issue

7

Volume

113

This document is currently not available here.

Share

COinS