Optimal One-Wafer Cyclic Scheduling and Buffer Space Configuration for Single-Arm Multicluster Tools with Linear Topology

Document Type

Article

Publication Date

10-1-2016

Abstract

This work studies the scheduling problem of a single-arm multicluster tool with a linear topology and process-bound bottleneck individual tool. The objective is to find a one-wafer cyclic schedule such that the lower bound of cycle time is reached by optimally configuring spaces in buffering modules that link individual cluster tools. A Petri net (PN) model is developed to describe the dynamic behavior of the system by extending resource-oriented PNs such that a schedule can be parameterized by robots' waiting time. Based on this model, conditions are presented under which a one-wafer cyclic schedule with the lower bound of cycle time can be found. With the derived conditions, an algorithm is developed to find such a schedule and optimally configure buffer spaces. The algorithm requires only simple calculation to set the robots' waiting time and buffer size. Illustrative examples are presented to demonstrate the proposed method.

Identifier

84988628751 (Scopus)

Publication Title

IEEE Transactions on Systems Man and Cybernetics Systems

External Full Text Location

https://doi.org/10.1109/TSMC.2015.2501232

e-ISSN

21682232

ISSN

21682216

First Page

1456

Last Page

1467

Issue

10

Volume

46

This document is currently not available here.

Share

COinS