Document Type

Dissertation

Date of Award

Summer 8-31-2007

Degree Name

Doctor of Philosophy in Electrical Engineering - (Ph.D.)

Department

Electrical and Computer Engineering

First Advisor

Durgamadhab Misra

Second Advisor

Cor L. Claeys

Third Advisor

Leonid Tsybeskov

Fourth Advisor

Marek Sosnowski

Fifth Advisor

Trevor Tyson

Sixth Advisor

Eduard A. Cartier

Abstract

The International Technology Roadmap for Semiconductors outlines the need for high-K dielectric based gate-oxide Metal Oxide Semiconductor Field Effect Transistors for sub-45 nm technology nodes. Gate oxides of hafnium seem to be the nearest and best alternative for silicon dioxide, when material, thermal and structural properties are considered. Usage of poly-Si as a gate electrode material degrades the performance of the device and hence gate stacks based on metal gate electrodes are gaining high interest. Though a substantial improvement in the performance has been achieved with these changes, reliability issues are a cause of concern. For analog and mixed-signal applications, low-frequency (I /f~ noise is a major reliability factor. Also in recent years. low frequency noise diagnostics has become a powerful tool for device performance and reliability characterization.

This dissertation work demonstrates the necessity of gate stack engineering for achieving a low I/f noise performance. Changes in the material and process parameters of the devices, impact the 1/f noise behavior. The impact of 1/f noise on gate technology and processing parameters xvere identified and investigated. The thickness and the quality of the interfacial oxide, the nitridation effects of the layers, high-K oxide, bulk properties of the high-K layer. percentage of hafnium content in the high-K, post deposition anneal (PDA) treatments, effects of gate electrode material (poly-silicon. fully silicided or metal). Gate electrode processing are investigated in detail. The role of additional interfaces and bulk layers of the gate stack is understood. The dependence of low-frequency noise on high and low temperatures was also investigated. A systematic and a deeper understanding of these parameters on 1/f noise behavior are deduced which also forms the basis for improved physics-based 1/f noise modeling. The model considers the effect of the interfacial layer and also temperature, based on tunneling based thermally activated model. The simulation results of improved drain-current noise model agree well with the experimentally calculated values.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.