Document Type

Dissertation

Date of Award

Summer 8-31-2004

Degree Name

Doctor of Philosophy in Mathematical Sciences - (Ph.D.)

Department

Mathematical Sciences

First Advisor

Denis L. Blackmore

Second Advisor

Robert M. Miura

Third Advisor

Lee D. Mosher

Fourth Advisor

Demetrius T. Papageorgiou

Fifth Advisor

Amitabha Koshal Bose

Abstract

In a parameter dependent, dynamical system, when the qualitative structure of the solutions changes due to a small change in the parameter, the system is said to have undergone a bifurcation. Bifurcations have been classified on the basis of the topological properties of fixed points and invariant manifolds of dynamical systems. A pitchfork bifurcation in R is said to have occurred when a stable fixed point becomes unstable and two new stable fixed points, separated by the unstable fixed point come into existence.

In this thesis, a pitchfork bifurcation of an (in- 1)-dimensional invariant submani-fold of a dynamical system in Rm is defined analogous to that in R. Sufficient conditions for such a bifurcation to occur are stated and existence of the bifurcated manifolds is shown under the stated hypotheses. The dynamical system is assumed to be a class C1 diffeomorphism or vector field in rtm. The existence of locally attracting invariant manifolds M+ and M- after the bifurcation has taken place, is proved by constructing a diffeomorphism of the unstable manifold M. Techniques used for proving the above mentioned result, involve differential topology and analysis and are adapted from Hartman [18] and Hirsch [19].

The main theorem of the thesis is illustrated by means of a canonical example and applied to a 2-dimensional discrete version of the Lotka-Volterra model, describing dynamics of a predator-prey population. The Lotka-Volterra model is slightly modified to depend on a continuously varying parameter. Significance of a pitchfork bifurcation in the Lotka-Volterra model is discussed with respect to population dynamics. Lastly, implications of the theorem are dicussed from a mathematical point of view.

Included in

Mathematics Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.