Document Type

Dissertation

Date of Award

Fall 1-31-2003

Degree Name

Doctor of Philosophy in Civil Engineering - (Ph.D.)

Department

Civil and Environmental Engineering

First Advisor

C.T. Thomas Hsu

Second Advisor

William R. Spillers

Third Advisor

Jay N. Meegoda

Fourth Advisor

Walter Konon

Fifth Advisor

Wei Wang

Abstract

Shear failure is catastrophic and occurs usually without advanced warning, thus it is desirable that the beam fails in flexure rather than in shear. Many existing reinforced concrete (RC) members are found to be deficient in shear strength and need to be repaired. Deficiencies occur due to several reasons such as insufficient shear reinforcement or reduction in steel area due to corrosion, increased service load, and construction defects. Externally bonded reinforcement such as Carbon Fiber Reinforced Polymer (CFRP) provides an excellent solution in these situations.

In order to investigate the shear behavior of RC beams with externally bonded CFRP shear reinforcement, experimental programs as well as analytical studies were conducted in this research. The research consists of three parts. They are 1). Regular beams with CFRP shear strengthening; 2). Deep beams with CFRP shear strengthening; and 3). Shear damaged beams with CFRP shear strengthening. CFRP laminates of various types and configurations were applied externally to the beams as shear reinforcement.

During the present experimental investigation, a total of five 4-foot long and six 6-foot long regular RC beams and sixteen 3-foot long deep RC beams were tested to study the behavior of shear strengthening using CFRP system. All beams were loaded by a 220-kip MTS TestStar 11 testing system. Results of the test demonstrate the feasibility of using externally applied, epoxy-bonded CFRP system to restore or increase the loadcarrying capacity in shear of RC beams. The CFRP system has been found to increase significantly the serviceability, ductility, and ultimate shear strength of a concrete beam. Restoring beam shear strength using CFRP is a highly effective technique.

Based on the experiments and analysis carried out at NJIT and the results from other researchers, new analysis and design methods for both regular and deep RC beams with externally bonded CFRP shear strengthening have also been proposed as well.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.