Document Type
Dissertation
Date of Award
Spring 5-31-2000
Degree Name
Doctor of Philosophy in Mathematical Sciences - (Ph.D.)
Department
Mathematical Sciences
First Advisor
N. Aubry
Second Advisor
Demetrius T. Papageorgiou
Third Advisor
Michael Siegel
Fourth Advisor
Burt S. Tilley
Fifth Advisor
Pushpendra Singh
Abstract
As it is well known, the flow past a cylinder consists of a symmetric recirculation bubble of vortices at small Reynolds numbers. As Reynolds number increases, the bubble becomes unstable and develops into a Karman vortex street of alternating vortices. This instability is responsible for the occurrence of large amplitude oscillations in the lift and an increase in the mean drag. It was previously shown by numerical simulation that the mechanism driving the bubble instability is well mimicked by Foppl's four dimensional potential flow model where the bubble is represented by a saddle point. In this work, we design two active feedback control algorithms for the model based on small perturbations applied to the cylinder in order to control the flow slightly perturbed away from the fixed point. We use the domain perturbation method and asymptotic expansions to derive control algorithms analytically. In the first algorithm, we displace the cylinder by a small vertical distance such that the lift remains zero at all times. We also show by direct numerical simulation of the flow (based on the full N-S equations) that our feedback control system is capable of preventing vortex shedding from occurring in the impulsively started viscous flow at Reynolds number Re = 100. In the second algorithm, we deform the cylinder uniformly so that the drag remains the drag of the steady recirculation bubble.
Recommended Citation
Li, Fu, "Active feedback control of a wake flow via forced oscillations based on a reduced model" (2000). Dissertations. 408.
https://digitalcommons.njit.edu/dissertations/408