Document Type
Dissertation
Date of Award
Summer 8-31-2013
Degree Name
Doctor of Philosophy in Materials Science and Engineering - (Ph.D.)
Department
Committee for the Interdisciplinary Program in Materials Science and Engineering
First Advisor
Camelia Prodan
Second Advisor
Andrew Hill
Third Advisor
Gordon A. Thomas
Fourth Advisor
Reginald Farrow
Fifth Advisor
Bryan J. Pfister
Sixth Advisor
Alokik Kanwal
Abstract
The health and vitality of brain tissue is dependent upon the cells' abilities to maintain ionic homeostasis across their plasma membranes. Even slight alterations in intracellular or extracellular can have a devastating effect on excitability and neural vitality. This thesis investigates several concepts related to ion flux. First, it investigates how ion flux affects characterization of brain tissue by dielectric spectroscopy and what can be done to overcome that effect. Second, it investigates how ion flux can be used to describe the state of health of the tissue. Finally, it investigates if pharmacological intervention can attenuate some of the deleterious ion flux seen in different pathologies.
The accumulation of ions in the extracellular fluid affects the use of dielectric spectroscopy to analyze the system. To attenuate this effect, a superfusion system was designed and built to provide fresh extracellular solution to the tissue. Furthermore, dielectric spectroscopy was utilized to analyze the change in conductivity of the extracellular solution as a result of various simulated pathologies. The change in conductivity was directly related to the severity of the insult. Finally, the ability of muopioid receptor activation to attenuate some of the damaging accumulation of extracellular potassium during simulated ischemia. The activation of this receptor proved to significantly modulate the accumulation of this potassium.
Recommended Citation
Dobiszewski, Kyle F., "Characterization of neural ion regulation dysfunction during insult and evaluation of micro-opioid receptor activation during simulated ischemia in the pre-botzinger complex" (2013). Dissertations. 387.
https://digitalcommons.njit.edu/dissertations/387