Document Type
Dissertation
Date of Award
Fall 1-31-2010
Degree Name
Doctor of Philosophy in Applied Physics - (Ph.D.)
Department
Federated Physics Department
First Advisor
N. M. Ravindra
Second Advisor
Anthony Fiory
Third Advisor
Michael R. Booty
Fourth Advisor
Tao Zhou
Fifth Advisor
Trevor Tyson
Sixth Advisor
Zhen Wu
Abstract
Since the introduction of micro-electro-mechanical systems fabrication methods, piezoresistive pressure sensors have become the more popular pressure transducers. They dominate pressure sensor commercialization due to their high performance, stability and repeatability. However, increasing demand for harsh environment sensing devices has made sensors based on Fabry-Perot interferometry the more promising optical pressure sensors due to their high degree of sensitivity, small size, high temperature performance, versatility, and improved immunity to environmental noise and interference. The work presented in this dissertation comprises the design, fabrication, and testing of sensors that fuse these two pressure sensing technologies into one integrated unit. A key innovation is introduction of a silicon diaphragm with a center rigid body (or boss), denoted as an embossed diaphragm, that acts as the sensing element for both the electronic and optical parts of the sensor.
Physical principles of piezoresistivity and Fabry-Perot interferometry were applied in designing an integrated sensor and in determining analytic models for the respective electronic and optical outputs. Several test pressure sensors were produced and their performance was evaluated by collecting response and noise data. Diaphragm deflection under applied pressure was detected electronically using the principle of piezoresistivity and optically using Fabry-Perot interferometry. The electronic part of the sensor contained four p-type silicon piezoresistors that were set into the diaphragm. They were connected in a Wheatstone bridge configuration for detecting strain-dependent changes in resistance induced by diaphragm deflection. In the optical part of the sensor, an optical cavity was formed between the embossed surface of the diaphragm and the end face of a single mode optical fiber. An infrared laser operating at 1.55 was used for optical excitation. Deflection of the diaphragm, which causes the length of the optical cavity to change, was detected by Fabry-Perot interference in the reflected light. Data collected on several sensors fabricated for this dissertation were shown to validate the theoretical models. In particular, the principle of operation of a Fabry-Perot interferometer as a mechanism for pressure sensing was demonstrated.
The physical characteristics and behavior of the embossed diaphragm facilitated the integration of the electronic and optical approaches because the embossed diaphragm remained flat under diaphragm deflection. Consequently, it made the electronic sensor respond more linearly to applied pressure. Further, it eliminated a fundamental deficiency of previous applications of Fabry-Perot methods, which suffered from non-parallelism between the two cavity surfaces (diaphragm and fiber), owing to diaphragm curvature after pressure was applied. It also permitted the sensor to be less sensitive to lateral misalignment during the fabrication process and considerably reduced back pressure, which otherwise reduced the sensitivity of the sensor. As an integrated sensor, it offered two independent outputs in one sensor and therefore the capability for measurements of: (a) static and dynamic pressures simultaneously, and (b) two different physical quantities such as temperature and pressure.
Recommended Citation
Padron, Ivan, "Integration of electronic and optical techniques in the design and fabrication of pressure sensors" (2010). Dissertations. 197.
https://digitalcommons.njit.edu/dissertations/197