Document Type

Dissertation

Date of Award

5-31-2023

Degree Name

Doctor of Philosophy in Information Systems - (Ph.D.)

Department

Informatics

First Advisor

Hai Nhat Phan

Second Advisor

Yi-Fang Brook Wu

Third Advisor

Yi Chen

Fourth Advisor

Tong Sun

Fifth Advisor

Xiong Li

Abstract

Nowadays, machine learning (ML) becomes ubiquitous and it is transforming society. However, there are still many incidents caused by ML-based systems when ML is deployed in real-world scenarios. Therefore, to allow wide adoption of ML in the real world, especially in critical applications such as healthcare, finance, etc., it is crucial to develop ML models that are not only accurate but also trustworthy (e.g., explainable, privacy-preserving, secure, and robust). Achieving trustworthy ML with different machine learning paradigms (e.g., deep learning, centralized learning, federated learning, etc.), and application domains (e.g., computer vision, natural language, human study, malware systems, etc.) is challenging, given the complicated trade-off among utility, scalability, privacy, explainability, and security. To bring trustworthy ML to real-world adoption with the trust of communities, this study makes a contribution of introducing a series of novel privacy-preserving mechanisms in which the trade-off between model utility and trustworthiness is optimized in different application domains, including natural language models, federated learning with human and mobile sensing applications, image classification, and explainable AI. The proposed mechanisms reach deployment levels of commercialized systems in real-world trials while providing trustworthiness with marginal utility drops and rigorous theoretical guarantees. The developed solutions enable safe, efficient, and practical analyses of rich and diverse user-generated data in many application domains.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.