Document Type

Dissertation

Date of Award

5-31-2023

Degree Name

Doctor of Philosophy in Biomedical Engineering - (Ph.D.)

Department

Biomedical Engineering

First Advisor

Xiaobo Li

Second Advisor

Tara L. Alvarez

Third Advisor

Bharat Biswal

Fourth Advisor

Ozlem Gunal

Fifth Advisor

Sridhar Kannurpatti

Abstract

Traumatic brain injury (TBI) in children is a major public health concern worldwide. Attention deficits are among the most common neurocognitive and behavioral consequences in children post-TBI which have significant negative impacts on their educational and social outcomes and compromise the quality of their lives. However, there is a paucity of evidence to guide the optimal treatment strategies of attention deficit related symptoms in children post-TBI due to the lack of understanding regarding its neurobiological substrate. Thus, it is critical to understand the neural mechanisms associated with TBI-induced attention deficits in children so that more refined and tailored strategies can be developed for diagnoses and long-term treatments and interventions.

This dissertation is the first study to investigate neurobiological substrates associated with post-TBI attention deficits in children using both anatomical and functional neuroimaging data. The goals of this project are to discover the quantitatively measurable markers utilizing diffusion tensor imaging (DTI), structural magnetic resonance imaging (MRI), and functional MRI (fMRI) techniques, and to further identify the most robust neuroimaging features in predicting severe post-TBI attention deficits in children, by utilizing machine learning and deep learning techniques. A total of 53 children with TBI and 55 controls from age 9 to 17 are recruited. The results show that the systems-level topological properties in left frontal regions, parietal regions, and medial occipitotemporal regions in structural and functional brain network are significantly associated with inattentive and/or hyperactive/impulsive symptoms in children post-TBI. Semi-supervised deep learning modeling further confirms the significant contributions of these brain features in the prediction of elevated attention deficits in children post-TBI. The findings of this project provide valuable foundations for future research on developing neural markers for TBI-induced attention deficits in children, which may significantly assist the development of more effective and individualized diagnostic and treatment strategies.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.