Document Type

Dissertation

Date of Award

5-31-2022

Degree Name

Doctor of Philosophy in Mathematical Sciences - (Ph.D.)

Department

Mathematical Sciences

First Advisor

Catalin C. Turc

Second Advisor

Peter G. Petropoulos

Third Advisor

Shahriar Afkhami

Fourth Advisor

David Shirokoff

Fifth Advisor

Carlos Perez Arancibia

Abstract

An investigation of high order Convolution Quadratures (CQ) methods for the solution of the wave equation in unbounded domains in two dimensions is presented. These rely on Nystrom discretizations for the solution of the ensemble of associated Laplace domain modified Helmholtz problems. Two classes of CQ discretizations are considered: one based on linear multistep methods and the other based on Runge-Kutta methods. Both are used in conjunction with Nystrom discretizations based on Alpert and QBX quadratures of Boundary Integral Equation (BIE) formulations of the Laplace domain Helmholtz problems with complex wavenumbers. CQ in conjunction with BIE is an excellent candidate to eventually explore numerical homogenization to replace a chaff cloud by a dispersive lossy dielectric that produces the same scattering. To this end, a variety of accuracy tests are presented that showcase the high-order in time convergence (up to and including fifth order) that the Nystrom CQ discretizations are capable of delivering for a variety of two dimensional single and multiple scatterers. Particular emphasis is given to Lipschitz boundaries and open arcs with both Dirichlet and Neumann boundary conditions.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.