Document Type

Dissertation

Date of Award

5-31-2022

Degree Name

Doctor of Philosophy in Transportation - (Ph.D.)

Department

Civil and Environmental Engineering

First Advisor

I-Jy Steven Chien

Second Advisor

Lazar Spasovic

Third Advisor

Janice Rhoda Daniel

Fourth Advisor

Joyoung Lee

Fifth Advisor

Athanassios K. Bladikas

Abstract

Large hauling capability and low rolling resistance has put rail transit at the forefront of mass transportation mode sustainability in terms of congestion mitigation and energy conservation. As such, rail vehicles are one of the least energy-intensive modes of transportation and least environmentally polluting. Despite, these positives, improper driving habits and wastage of the braking energy through dissipation in braking resistors result in unnecessary consumption, extra costs to the operator and increased atmospheric greenhouse gas emissions.

This study presents an intelligent method for the optimization of the number and locations of wayside energy storage system (WESS) units that maximize the net benefits of the operation of a rail line. First, the optimized speed profiles with and without WESS is determined for a single alignment segment. Then, using the speed profiles obtained as an input, the number and locations of the WESS units that maximize the net benefit is determined for an entire rail line. The energy recovery methods used comprise optimal coasting, regenerative braking, and positioning of the energy storage devices to achieve maximum receptivity. Coasting saves energy by maintaining motion with propulsion disabled, but this increases the total travel time. Regenerative braking converts the kinetic energy of the train into electrical energy for the powering of subsequent acceleration cycles and although it does not affect travel time, it reduces the time available for coasting, indicative of a tradeoff. The study entails the design of a model that simulates the movement of the train over an existing alignment section while considering alignment topography, speed limits, and train schedule. Since on-time performance is the priority of railroad operations, the simulator instructs the driver to operate according to several motion regimes to optimize the energy consumption while maintaining schedule.

The model consists of several time-varying inputs which add increased levels of complexity to the problem. This, in addition to its combinatorial nature, necessitates a heuristic algorithm to solve it, because traditional analytical solution methods are deficient. The optimization problem is solved by applying Genetic Algorithms (GA) because of their ability to search for a global solution in a complex multi-dimensional space. This strategy adds sustainability and reduces the carbon footprint of the operator. A case study is conducted on a single segment of a commuter rail line and yields a 34% energy reduction. The case study is extended to an entire line with multiple segments where the aim is to optimize the locations of wayside energy storage devices (WESS) for maximum economic benefit. It was found that out of the 10 alignment segments in the study, a maximized benefit of over $600,000 was achieved with WESS units installed on only three of those segments.

The methods derived in this study can be used to generate speed profiles for planning purposes, to assist in recovery from service disruptions, to plan for infrastructural upgrades related to energy harvesting or to assist in the development of Driver Advisory Systems (DAS).

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.