Document Type

Dissertation

Date of Award

12-31-2021

Degree Name

Doctor of Philosophy in Computing Sciences - (Ph.D.)

Department

Computer Science

First Advisor

Iulian Neamtiu

Second Advisor

Ali Mili

Third Advisor

Usman W. Roshan

Fourth Advisor

Ioannis Koutis

Fifth Advisor

Ji Meng Loh

Abstract

Cluster analysis aka Clustering is used in myriad applications, including high-stakes domains, by millions of users. Clustering users should be able to assume that clustering implementations are correct, reliable, and for a given algorithm, interchangeable. Based on observations in a wide-range of real-world clustering implementations, this dissertation challenges the aforementioned assumptions.

This dissertation introduces an approach named SmokeOut that uses differential clustering to show that clustering implementations suffer from nondeterminism and inconsistency: on a given input dataset and using a given clustering algorithm, clustering outcomes and accuracy vary widely between (1) successive runs of the same toolkit, i.e., nondeterminism, and (2) different toolkits, i.e, inconsistency. Using a statistical approach, this dissertation quantifies and exposes statistically significant differences across runs and toolkits. This dissertation exposes the diverse root causes of nondeterminism or inconsistency, such as default parameter settings, noise insertion, distance metrics, termination criteria. Based on these findings, this dissertation introduces an automatic approach for locating the root causes of nondeterminism and inconsistency.

This dissertation makes several contributions: (1) quantifying clustering outcomes across different algorithms, toolkits, and multiple runs; (2) using a statistical rigorous approach for testing clustering implementations; (3) exposing root causes of nondeterminism and inconsistency; and (4) automatically finding nondeterminism and inconsistency’s root causes.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.