Document Type

Dissertation

Date of Award

Spring 5-31-2019

Degree Name

Doctor of Philosophy in Electrical Engineering - (Ph.D.)

Department

Electrical and Computer Engineering

First Advisor

Xuan Liu

Second Advisor

Haim Grebel

Third Advisor

N. Chandra

Fourth Advisor

Dong Kyun Ko

Fifth Advisor

S. Basuray

Abstract

Optical coherence tomography (OCT) is a cross-sectional imaging modality that is widely used in clinical ophthalmology and interventional cardiology. It is highly promising for in situ characterization of tumor tissues. OCT has high spatial resolution and high imaging speed to assist clinical decision making in real-time.

OCT can be used in both structural imaging and mechanical characterization. Malignant tumor tissue alters morphology. Additionally, structural OCT imaging has limited tissue differentiation capability because of the complex and noisy nature of the OCT signal. Moreover, the contrast of structural OCT signal derived from tissue’s light scattering properties has little chemical specificity. Hence, interrogating additional tissue properties using OCT would improve the outcome of OCT’s clinical applications. In addition to morphological difference, pathological tissue such as cancer breast tissue usually possesses higher stiffness compared to the normal healthy tissue, which indicates a compelling reason for the specific combination of structural OCT imaging with stiffness assessment in the development of dual-modality OCT system for the characterization of the breast cancer diagnosis.

This dissertation seeks to integrate the structural OCT imaging and the optical coherence elastography (OCE) for breast cancer tissue characterization. OCE is a functional extension of OCT. OCE measures the mechanical response (deformation, resonant frequency, elastic wave propagation) of biological tissues under external or internal mechanical stimulation and extracts the mechanical properties of tissue related to its pathological and physiological processes. Conventional OCE techniques (i.e., compression, surface acoustic wave, magnetomotive OCE) measure the strain field and the results of OCE measurement are different under different loading conditions. Inconsistency is observed between OCE characterization results from different measurement sessions. Therefore, a robust mechanical characterization is required for force/stress quantification. A quantitative optical coherence elastography (qOCE) that tracks both force and displacement is proposed and developed at NJIT. qOCE instrument is based on a fiber optic probe integrated with a Fabry-Perot force sensor and the miniature probe can be delivered to arbitrary locations within animal or human body.

In this dissertation, the principle of qOCE technology is described. Experimental results are acquired to demonstrate the capability of qOCE in characterizing the elasticity of biological tissue. Moreover, a handheld optical instrument is developed to allow in vivo real-time OCE characterization based on an adaptive Doppler analysis algorithm to accurately track the motion of sample under compression.

For the development of the dual modality OCT system, the structural OCT images exhibit additive and multiplicative noises that degrade the image quality. To suppress noise in OCT imaging, a noise adaptive wavelet thresholding (NAWT) algorithm is developed to remove the speckle noise in OCT images. NAWT algorithm characterizes the speckle noise in the wavelet domain adaptively and removes the speckle noise while preserving the sample structure. Furthermore, a novel denoising algorithm is also developed that adaptively eliminates the additive noise from the complex OCT using Doppler variation analysis.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.