Document Type
Dissertation
Date of Award
Spring 5-31-2019
Degree Name
Doctor of Philosophy in Applied Physics - (Ph.D.)
Department
Physics
First Advisor
Alexander G. Kosovichev
Second Advisor
Haimin Wang
Third Advisor
Bin Chen
Fourth Advisor
Zhen Wu
Fifth Advisor
Gelu M. Nita
Sixth Advisor
Vincent Oria
Abstract
For a comprehensive understanding of the energy release and chromospheric evaporation processes in solar flares it is necessary to perform a combined multi-wavelength analysis using observations from space-based and ground-based observatories, and compare the results with predictions of the radiative hydrodynamic (RHD) flare models. Initially, the case study of spatially-resolved chromospheric evaporation properties for an M 1.0-class solar flare (SOL2014-06-12T21:12) using data form IRIS (Interface Region Imaging Spectrograph), HMI/SDO (Helioseismic and Magnetic Imager onboard Solar Dynamics Observatory), and VIS/GST (Visible Imaging Spectrometer at Goode Solar Telescope), demonstrate a complicated nature of evaporation and its connection to the magnetic field topology. Following this study, the Interactive Multi-Instrument Database of Solar Flares (IMIDSF) is designed for efficient search, integration, and representation of solar flares for statistical studies. Comparison of the energy release and chromospheric evaporation properties for seven solar flares simultaneously observed by IRIS and RHESSI (Reuven Ramaty High Energy Solar Spectroscopic Imager) with predictions of the RHD electron beam-heating flare models reveals weak correlations between deposited energy fluxes and Doppler shifts of IRIS lines for observations and strong fore models, together with other quantitative discrepancies. Statistical analysis of properties of Soft X-Ray (SXR) emission, plasma temperature (T), and emission measure (EM), derived from GOES (Geostationary Operational Environmental Satellite) observations demonstrate that flares form two groups, “T-controlled” and “EM-controlled”, distinguished by different contribution of T and EM to the SXR peak formation and presumably evolving in loops of different lengths. Also, the modeling of the SDO/HMI line-of-sight observables for RHD flare models highlights that for relatively high deposited energy fluxes (≥ 5.0 x 1010 erg cm-2 s-1) the sharp magnetic transients and Doppler velocities observed during the solar flares by HMI/SDO should be interpreted with caution. Finally, problems of the solar flare prediction and the role of the magnetic field Polarity Inversion Lines (PIL) in the initiation and development of flares are considered. In particular, the possibility to enhance the daily operational forecasts of M-class flares by considering jointly PIL and other magnetic field and SXR characteristics is demonstrated, with corresponding Brier Skill Scores (BSS = 0.29 ± 0.04) higher than for the SWPC NOAA operational probabilities (BSS = 0.09 ± 0.04).
Recommended Citation
Sadykov, Viacheslav M., "Multi-wavelength investigation of energy release and chromospheric evaporation in solar flares" (2019). Dissertations. 1406.
https://digitalcommons.njit.edu/dissertations/1406