Document Type

Dissertation

Date of Award

Spring 5-31-1986

Degree Name

Doctor of Engineering Science in Chemical Engineering

Department

Chemical Engineering, Chemistry and Environmental Science

First Advisor

Gordon Lewandowski

Second Advisor

Richard B. Trattner

Third Advisor

John E. McCormick

Fourth Advisor

Wing T. Wong

Fifth Advisor

Paul N. Cheremisinoff

Abstract

Empirical models were developed to describe the fluid flow characteristics and gas absorption efficiency of an ejector venturi scrubber. The empirical constants were determined experimentally using stop action photographs of the spray, static pressure measurements, and sulfur dioxide absorption efficiencies.

To take photographs of the spray, a 2 foot high, clear plastic ejector venturi scrubber was used, with a 4 inch diameter gas entrance port. Photographic equipment included a Hasselblad camera, Xenon flash lamp, and Polaroid 667 ASA 3000 film. Exposure duration was about 1 microsecond, resulting in complete stop-action of the spray droplets at liquid rates up to 6 gpm. Droplet size ranged from 34 to 563 microns, with a volume mean diameter of 155 microns, at a liquid rate of 6 gpm.

The sulfur dioxide mass transfer coefficient (Kga) varied from 0.6 to 796 lb-moles/hr-ft3 as the liquid delivery rate was varied from 1 to 8 gpm (i.e. from no atomization to complete atomization).

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.