Document Type
Dissertation
Date of Award
Fall 10-31-1993
Degree Name
Doctor of Philosophy in Computing Sciences - (Ph.D.)
Department
Computer and Information Science
First Advisor
Frank Y. Shih
Second Advisor
James A. McHugh
Third Advisor
David Nassimi
Fourth Advisor
Daochuan Hung
Fifth Advisor
Nirwan Ansari
Abstract
Morphological operations applied in image processing and analysis are becoming increasingly important in today's technology. Morphological operations which are based on set theory, can extract object features by suitable shape (structuring elements). Morphological filters are combinations of morphological operations that transform an image into a quantitative description of its geometrical structure which based on structuring elements. Important applications of morphological operations are shape description, shape recognition, nonlinear filtering, industrial parts inspection, and medical image processing.
In this dissertation, basic morphological operations are reviewed, algorithms and theorems are presented for solving problems in distance transformation, skeletonization, recognition, and nonlinear filtering. A skeletonization algorithm using the maxima-tracking method is introduced to generate a connected skeleton. A modified algorithm is proposed to eliminate non-significant short branches. The back propagation morphology is introduced to reach the roots of morphological filters in only two-scan. The definitions and properties of back propagation morphology are discussed. The two-scan distance transformation is proposed to illustrate the advantage of this new definition.
G-spectrum (geometric spectrum) which based upon the cardinality of a set of non-overlapping segments in an image using morphological operations is presented to be a useful tool not only for shape description but also for shape recognition. The G-spectrum is proven to be translation-, rotation-, and scaling-invariant. The shape likeliness based on G-spectrum is defined as a measurement in shape recognition. Experimental results are also illustrated.
Soft morphological operations which are found to be less sensitive to additive noise and to small variations are the combinations of order statistic and morphological operations. Soft morphological operations commute with thresholding and obey threshold superposition. This threshold decomposition property allows gray-scale signals to be decomposed into binary signals which can be processed by only logic gates in parallel and then binary results can be combined to produce the equivalent output. Thus the implementation and analysis of function-processing soft morphological operations can be done by focusing only on the case of sets which not only are much easier to deal with because their definitions involve only counting the points instead of sorting numbers, but also allow logic gates implementation and parallel pipelined architecture leading to real-time implementation. In general, soft opening and closing are not idempotent operations, but under some constraints the soft opening and closing can be idempotent and the proof is given. The idempotence property gives us the idea of how to choose the structuring element sets and the value of index such that the soft morphological filters will reach the root signals without iterations. Finally, summary and future research of this dissertation are provided.
Recommended Citation
Pu, Chamim Christopher, "Morphological operations in image processing and analysis" (1993). Dissertations. 1186.
https://digitalcommons.njit.edu/dissertations/1186