Date of Award

Spring 1997

Document Type

Dissertation

Degree Name

Doctor of Philosophy in Computing Sciences - (Ph.D.)

Department

Computer and Information Science

First Advisor

Edwin Hou

Second Advisor

Peter A. Ng

Third Advisor

Yun Q. Shi

Fourth Advisor

Daochuan Hung

Fifth Advisor

Timothy Nam Chang

Abstract

This dissertation presents the development of three computer systems for multi-wavelength thermal imaging.

Two computer systems were developed for the multi-wavelength imaging pyrometers (M-WIPs) that yield non-contact temperature measurements by remotely sensing the surface of objects with unknown wavelength-dependent emissivity. These M-WIP computer systems represent the state-of-art development in remote temperature measurement system based on the multi-wavelength approach. The dissertation research includes M-WIP computer system integration, software development, performance evaluation, and also applications in monitoring and control of temperature distribution of silicon wafers in a rapid thermal process system.

The two M-WIPs are capable of data acquisition, signal processing, system calibration, radiometric measurement, parallel processing and process control. Temperature measurement experiments demonstrated the accuracy of ±1°C against blackbody and ±4°C for colorbody objects. Various algorithms were developed and implemented, including real-time two-point non-uniformity correction, thermal image pseudocoloring, PC to SUN workstation data transfer, automatic IR camera integration time control, and radiometric measurement parallel processing.

A third computer system was developed for the demonstration of a 3-color InGaAs FPA which can provide images with information in three different IR wavelength range simultaneously. Numbers of functions were developed to demonstrate and characterize 3-color FPAs, and the system was delivered to be used by the 3-color FPA manufacturer.

Share

COinS