Document Type


Date of Award

Fall 1-31-1998

Degree Name

Master of Science in Mechanical Engineering - (M.S.)


Mechanical Engineering

First Advisor

Avraham Harnoy

Second Advisor

Bernard Friedland

Third Advisor

Zhiming Ji


In this thesis, measurements of dynamic friction in a hydrodynamic journal bearing were performed for varying sinusoidal velocity excitations, loads, and lubricants. The results indicate that the friction data displays a negative slope in the mixed region of friction vs. velocity (f-v) curves, and also shows that the dynamic friction is not just a function of current velocity, but also a function of velocity history (hysteresis). These results are in agreement with previous experimental investigations by other investigators in lubricated friction.

Secondly, a dynamic friction model is fully explored and partially extended to provide quantitative agreement to measured friction values. A contribution to friction modeling was made by reducing the model from a fourth to a second order equation. Parameters were determined for one lubricant and two non-nal loads, and the model output is compared to experimental data.

Finally, model-based friction compensation was successfully performed. The dynamic friction model is used as a basis for velocity and position control of an apparatus with high friction by incorporating a function to constantly learn two parameters of the model. Results demonstrate the feasibility of using a rich friction model in real time, and its ability to greatly reduce the tracking errors caused by friction.

This thesis was supported by the National Science Foundation under Grant MSS9215636.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.