Date of Award

Spring 2004

Document Type


Degree Name

Master of Science in Electrical Engineering - (M.S.)


Electrical and Computer Engineering

First Advisor

Alexander Haimovich

Second Advisor

Haim Grebel

Third Advisor

Larry J. Greenstein


Ultra-wideband (UWB) indoor frequency domain channel measurements have been performed in the 2 GHz to 6 GHz frequency band using three different transmitter/receiver (Tx/Rx) antenna combination pairs. The effects of antenna directivity on path loss and multipath propagation in the channel were analyzed extensively for various omni-directional and directional antenna combinations. A statistical model of the path loss in the channel is presented, where the parameters in the model (i.e., path loss exponent and shadow fading statistics) are dependent on the particular Tx/Rx antenna combination. Time domain statistics of the channel (i.e., mean delay spread and RMS delay spread) are analyzed thoroughly for each antenna combination. Results show that RMS delay spread increases over distance for all three antenna combinations, but at a greater rate when directional antennas are used in the channel. There is a significant reduction in RMS delay spread when directional antennas are used at the transmitter and receiver or solely at the receiver with respect to an omni-directional/omni-directional antenna pair. Results show that directional antennas can be used as an effective way of mitigating the effects of multipath propagation in UWB indoor channels. A distance dependent statistical impulse response model of the channel is also presented, which statistically reproduces the impulse response of the channel with high fidelity.