Document Type

Thesis

Date of Award

Fall 1-31-2017

Degree Name

Master of Science in Chemical Engineering - (M.S.)

Department

Chemical, Biological and Pharmaceutical Engineering

First Advisor

S. Basuray

Second Advisor

Robert Benedict Barat

Third Advisor

Laurent Simon

Fourth Advisor

Dong Kyun Ko

Abstract

Electrochemical sensors and biosensors have received much attention owing to the feasibility demonstrated regarding instrumental simplicity, decent cost, and portability during the detection of a wide range of biological and pharmaceutical macromolecules. Carbon-based nanomaterials, including carbon nanotubes, have garnered tremendous interest for their unique thermal, mechanical, electronic and catalytic properties while designing these sensors. Whenever the macromolecules interact with a bio-recognition element on the electrode transducer surface, a measurable change in the electrical current or potential takes place. To achieve lower limits of detection, the use of sensor surfaces modified with nanostructured materials such as nanotubes, or nanoparticles is becoming increasingly significant. The study aims to design a CNT-based electrochemical glass sensor which purifies monoclonal antibody in the presence of its biorecognition element (e.g. an antigen). The system utilizes an open-flow carbon nanotube platform for monoclonal antibody purification using impedance-based sensing (EIS). The open flow allows rapid concentration of the target molecules and shear-enhanced specificity leading to maximum hydrodynamic shear force. Interdigitated electrodes are used to trap multi-walled carbon nanotubes. The principals involved in fabricating such a device can be applied for the detection of some other pharmaceutical molecules. At the same time, CNTs replaced by ZnO and Al2O3 based nanomaterials can also be taken into account for detection of various macromolecules for better sensitivity and better specificity.

Share

COinS