Document Type


Date of Award


Degree Name

Master of Science in Materials Science and Engineering - (M.S.)



First Advisor

Camelia Prodan

Second Advisor

Ken Keunhyuk Ahn

Third Advisor

Farnaz A .Shakib


This work encompassed three different vibrational energy transfer studies of coupled resonators (metal, topological, and microtubule comparison) inspired by the lattices of microtubules from regular and cancerous cells. COMSOL Multiphysics 5.4 was utilized to design the experiment. The simulation starts with an acoustic pressure study to examine the vibrational modes present in coupled cylinders, representing α-, β-tubulin heterodimers. The Metal Study consisted of 3 models (monomer, dimer, and trimer) to choose the correct height (40 mm) and mode (Mode 1) for study. The Topological Study was run to predict and understand how the lattice structure changes over a parametric sweep (Qian et al. [7]). This study includes a Su-Schrieffer-Heeger Model for prediction, then a Model inspired by the microtubule protofilament. Finally, a new proposed method is given to simulate a microtubule. Study 3 has 2 models, both with a two-dimensional lattice, but the second with two distinct domains to emulate the 80 % - 20 % healthy/cancerous regions within a cancerous microtubule. The spectrums from each model is inspired by the microtubule-associated proteins (MAPs) bound to the tubulin dimers, in Region 1, then unbinding in Region 2. The Cancerous Model shows less energy held within the lattice as compared to the Microtubule Model. Future work could involve changing the coupling strengths and distances to conform to schematics from Mart´inez et al. [5] and Deniz et al. [4].



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.