Document Type


Date of Award


Degree Name

Master of Science in Electrical Engineering - (M.S.)


Electrical and Computer Engineering

First Advisor

Xuan Liu

Second Advisor

Haim Grebel

Third Advisor

Yi Yang


Various optical technologies have been utilized to improve art conservation by art conservators, such as laser triangulation, stereophotogrammetry, structured light, laser scanner and time of flight sensors. These methods have been deployed to capture the 3D or surface topography information of sculptures and architectures. Optical coherence tomography (OCT) has introduced new imaging methods to study the surface features and subsurface structures of delicate cultural heritage objects. However, despite its higher spatial resolution, the field of view (FOV) of OCT severely limits the size of the scanning area and does not allow macroscopic examination. To solve this issue, we develop and validate a hybrid scanning platform combined with effective algorithm for real-time sampling and artifact removal to achieve macroscopic OCT (macro-OCT) imaging and generate the spectral 3D reconstruction of impressionist style oil paintings as a digital model.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.