Document Type


Date of Award

Spring 5-31-2013

Degree Name

Master of Science in Biomedical Engineering - (M.S.)


Biomedical Engineering

First Advisor

Mesut Sahin

Second Advisor

Tara L. Alvarez

Third Advisor

Raquel Perez-Castillejos


Light has been used extensively in the medical field for both therapeutic and diagnostic applications. Tissue optical window or therapeutic window defines the range of wavelengths where the light has the maximum transmittance through tissue. In this range, absorption and scattering effects are relatively lower when compared to the visible or middle infrared wavelengths. Knowledge of the transmittance through tissue can help determine the effective light intensities in medical applications.

The objective of this thesis is to determine the NIR light transmission through different thicknesses of animal tissue and its spatial spread due to the scattering effect. Primarily pork skin and muscle tissues are used due to their similar optical properties to human tissue. Tissue thicknesses range from 4 mm to 20 mm. A NIR LED array with the wavelength of 875 nm serves as the light source. A commercial photodiode is used for measurements of the transmitted light intensities.

The results demonstrate a transmittance of 18% for 4 mm tissue thickness and 3% for 20 mm and vary exponentially in between. Scattering increases the spatial spread of the light beam and makes it very difficult to focus inside the tissue. In addition to the transmittance measurements, temperature elevation due to the NIR light illumination is investigated. Thermocouple measurements show a temperature increase of 1.2 °C on the surface of the tissue slab at the light intensities tested in this project.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.