Differential evolution algorithms under multi-population strategy

Document Type

Conference Proceeding

Publication Date

5-15-2017

Abstract

A differential evolution (DE) algorithm is an evolutionary algorithm for optimization problems over a continuous domain. To solve high dimensional global optimization problems, this work investigates the performance of differential evolution algorithms under a multi-population strategy. The original DE algorithm generates an initial set of suitable solutions. The multi population strategy divides the set into several subsets. These subsets evolve independently and connect with each other according to the DE algorithm. This helps in preserving the diversity of the initial set. Furthermore, a comparison of combination of different mutation techniques on several optimization algorithms is studied to verify their performance. Finally the computational results on eleven well-know benchmark optimization functions, reveal some interesting relationship between the number of subpopulations and performance of the DE.

Identifier

85021391081 (Scopus)

ISBN

[9781509049097]

Publication Title

2017 26th Wireless and Optical Communication Conference Wocc 2017

External Full Text Location

https://doi.org/10.1109/WOCC.2017.7928972

This document is currently not available here.

Share

COinS