Efficient and Environmentally Friendly Synthesis of AlFe-PILC-Supported MnCe Catalysts for Benzene Combustion

Document Type

Article

Publication Date

8-31-2017

Abstract

An efficient and environmentally friendly synthesis of AlFe-pillared clay (AlFe-PILC)-supported MnCe catalysts was explored. Mixed AlFe pillaring agents were prepared by a one-step method using Locron L and ferric nitrate solutions at a high temperature and high pressure. Montmorillonite was treated with the AlFe pillaring agents to synthesize AlFe-PILC. MnOx and CeO2 with different Mn/Ce atomic ratios were loaded onto the AlFe-PILC support by an impregnation method. The catalysts were characterized using X-ray diffraction, N2 adsorption, and high-resolution transmission electron microscopy-energy dispersive spectrometry and were tested for the catalytic combustion of benzene and temperature-programmed surface reaction using a microreactor. Compared to conventional methods, this method is simpler and less costly and results in a larger specific surface area, pore volume, and basal spacing, with the ability to control the structure of the catalytic materials. MnCe(6:1)/AlFe-PILC has the highest catalytic activity and can completely degrade benzene (600 ppm in air) at 250 °C. The activity of the catalyst is stable, and no obvious deactivation is observed at 230 °C after 1000 continuous hours. The catalyst is resistant to water and Cl-poisoning. The amount of CeO2 added is critical to the dispersion of MnOx on the support and the creation of optimum number of oxygen vacancy defect sites for the benzene oxidation reaction. The AlFe-PILC-supported MnCe catalyst is a promising porous material; the support structure, proper dispersion of active species, and addition of Ce are essential for achieving complete degradation of organic toxic chemicals at relatively low temperatures.

Identifier

85044792630 (Scopus)

Publication Title

ACS Omega

External Full Text Location

https://doi.org/10.1021/acsomega.7b00592

e-ISSN

24701343

First Page

5179

Last Page

5186

Issue

8

Volume

2

Grant

21577094

Fund Ref

National Natural Science Foundation of China

This document is currently not available here.

Share

COinS