SELF: A High Performance and Bandwidth Efficient Approach to Exploiting Die-Stacked DRAM as Part of Memory

Document Type

Conference Proceeding

Publication Date

11-13-2017

Abstract

Die-stacked DRAM (a.k.a., on-chip DRAM) provides much higher bandwidth and lower latency than off-chip DRAM. It is a promising technology to break the 'memory wall'. Die-stacked DRAM can be used either as a cache (i.e., DRAM cache) or as a part of memory (PoM). A DRAM cache design would suffer from more page faults than a PoM design as the DRAM cache cannot contribute towards capacity of main memory. At the same time, obtaining high performance requires PoM systems to swap requested data to the die-stacked DRAM. Existing PoM designs fall into two categories line-based and page-based. The former ensures low off-chip bandwidth utilization but suffers from a low hit ratio of on-chip memory due to limited temporal locality. In contrast, page-based designs achieve a high hit ratio of on-chip memory albeit at the cost of moving large amounts of data between on-chip and off-chip memories, leading to increased off-chip bandwidth utilization and significant system performance degradation.To achieve a similar high hit ratio of on-chip memory as page-based designs, and eliminate excessive off-chip traffic involved, we propose SELF, a high performance and bandwidth efficient approach. The key idea is to SElectively swap Lines in a requested page that are likely to be accessed according to page Footprint, instead of blindly swapping an entire page. In doing so, SELF allows incoming requests to be serviced from the on-chip memory as much as possible, while avoiding swapping unused lines to reduce memory bandwidth consumption. We evaluate a memory system which consists of 4GB on-chip DRAM and 12GB off-chip DRAM. Compared to a baseline system that has the same total capacity of 16GB off-chip DRAM, SELF improves the performance in terms of instructions per cycle by 26.9%, and reduces the energy consumption per memory access by 47.9% on average. In contrast, state-of-the-art line-based and page-based PoM designs can only improve the performance by 9.5% and 9.9%, respectively, against the same baseline system.

Identifier

85040507095 (Scopus)

ISBN

[9781538627631]

Publication Title

Proceedings 25th IEEE International Symposium on Modeling Analysis and Simulation of Computer and Telecommunication Systems Mascots 2017

External Full Text Location

https://doi.org/10.1109/MASCOTS.2017.23

First Page

187

Last Page

197

Grant

1547804

Fund Ref

National Science Foundation

This document is currently not available here.

Share

COinS