DPNE: Differentially private network embedding

Document Type

Conference Proceeding

Publication Date

1-1-2018

Abstract

Learning the low-dimensional representations of the vertices in a network can help users understand the network structure and perform other data mining tasks efficiently. Various network embedding approaches such as DeepWalk and LINE have been developed recently. However, how to protect the individual privacy in network embedding has not been exploited. It is challenging to achieve high utility as the sensitivity of stochastic gradients in random walks and that of edge sampling are very high, thus incurring high utility loss when applying Laplace mechanism and exponential mechanism to achieve differential privacy. In this paper, we develop a differentially private network embedding method (DPNE). In this method, we leverage the recent theoretical findings that network embedding methods such as DeepWalk and LINE are equivalent to factorization of some matrices derived from the adjacency matrix of the original network and apply objective perturbation on the objective function of matrix factorization. We evaluate the learned representations by our DPNE from three different real world datasets on two data mining tasks: vertex classification and link prediction. Experiment results show the effectiveness of DPNE. To our best knowledge, this is the first work on how to preserve differential privacy in network embedding.

Identifier

85049378809 (Scopus)

ISBN

[9783319930367]

Publication Title

Lecture Notes in Computer Science Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics

External Full Text Location

https://doi.org/10.1007/978-3-319-93037-4_19

e-ISSN

16113349

ISSN

03029743

First Page

235

Last Page

246

Volume

10938 LNAI

Grant

1R01GM103309

Fund Ref

National Science Foundation

This document is currently not available here.

Share

COinS