Self-Assembly of a Dentinogenic Peptide Hydrogel
Document Type
Article
Publication Date
6-30-2018
Abstract
Current standard of care for treating infected dental pulp, root canal therapy, retains the physical properties of the tooth to a large extent, but does not aim to rejuvenate the pulp tissue. Tissue-engineered acellular biomimetic hydrogels have great potential to facilitate the regeneration of the tissue through the recruitment of autologous stem cells. We propose the use of a dentinogenic peptide that self-assembles into β-sheet-based nanofibers that constitute a biodegradable and injectable hydrogel for support of dental pulp stem cells. The peptide backbone contains a β-sheet-forming segment and a matrix extracellular phosphoglycoprotein mimic sequence at the C-terminus. The high epitope presentation of the functional moiety in the self-assembled nanofibers may enable recapitulation of a functional niche for the survival and proliferation of autologous cells. We elucidated the hierarchical self-assembly of the peptide through biophysical techniques, including scanning electron microscopy and atomic force microscopy. The material property of the self-assembled hydrogel was probed though oscillatory rheometry, demonstrating its thixotropic nature. We also demonstrate the cytocompatibility of the hydrogel with respect to fibroblasts and dental pulp stem cells. The self-assembled peptide platform holds promise for guided dentinogenesis and it can be tailored to a variety of applications in soft tissue engineering and translational medicine in the future.
Identifier
85048140401 (Scopus)
Publication Title
ACS Omega
External Full Text Location
https://doi.org/10.1021/acsomega.8b00347
e-ISSN
24701343
First Page
5980
Last Page
5987
Issue
6
Volume
3
Fund Ref
University of Rhode Island
Recommended Citation
Nguyen, Peter K.; Gao, William; Patel, Saloni D.; Siddiqui, Zain; Weiner, Saul; Shimizu, Emi; Sarkar, Biplab; and Kumar, Vivek A., "Self-Assembly of a Dentinogenic Peptide Hydrogel" (2018). Faculty Publications. 8592.
https://digitalcommons.njit.edu/fac_pubs/8592
