Temporally and spatially adaptive Doppler analysis for robust handheld optical coherence elastography
Document Type
Article
Publication Date
7-1-2018
Abstract
Optical coherence elastography (OCE), a functional extension of optical coherence tomography (OCT), can be used to characterize the mechanical properties of biological tissue. A handheld fiber-optic OCE instrument will allow the clinician to conveniently interrogate the localized mechanical properties of in vivo tissue, leading to better informed clinical decision making. During handheld OCE characterization, the handheld probe is used to compress the sample and the displacement of the sample is quantified by analyzing the OCT signals acquired. However, the motion within the sample inevitably varies in time due to varying hand motion. Moreover, the motion speed depends on spatial location due to the sample deformation. Hence, there is a need for a robust motion tracking method for manual OCE measurement. In this study, we investigate a temporally and spatially adaptive Doppler analysis method. The method described here strategically chooses the time interval (δt) between signals involved in Doppler analysis to track the motion speed v(z,t) that varies temporally and spatially in a deformed sample volume under manual compression. Enabled by temporally and spatially adaptive Doppler analysis, we report the first demonstration of real-time manual OCE characterization of in vivo tissue to the best of our knowledge.
Identifier
85049373961 (Scopus)
Publication Title
Biomedical Optics Express
External Full Text Location
https://doi.org/10.1364/BOE.9.003335
e-ISSN
21567085
First Page
3335
Last Page
3353
Issue
7
Volume
9
Grant
1R15CA213092-01A1
Fund Ref
National Institutes of Health
Recommended Citation
Liu, Xuan; Zaki, Farzana R.; Wu, Haokun; Wang, Chizhong; and Wang, Yahui, "Temporally and spatially adaptive Doppler analysis for robust handheld optical coherence elastography" (2018). Faculty Publications. 8559.
https://digitalcommons.njit.edu/fac_pubs/8559
