RETRO: Retroreflector Based Visible Light Indoor Localization for Real-time Tracking of IoT Devices

Document Type

Conference Proceeding

Publication Date

10-8-2018

Abstract

Indoor localization is very important to enable Internet-of-things (IoT) applications. Visible light communication (VLC)-based indoor localization approaches enjoy many advantages, such as utilization of existing ubiquitous lighting infrastructure, high location and orientation accuracy, and no interruption to RF -based devices. However, existing VLC-based localization methods lack a real-time backward channel from the device to landmarks and necessitate computation at the device, which make them unsuitable for real-time tracking of small IoT devices. In this paper, we propose and prototype a retroreflector-based visible light localization system (RETRO), that establishes an almost zero-delay backward channel using a retroreflector to reflect light back to its source. RETRO localizes passive IoT devices without requiring computation and heavy sensing (e.g., camera) at the devices. Multiple photodiodes (i.e., landmarks) are mounted on any single unmodified light source to sense the retroreflected optical signal (i.e., location signature). We theoretically derive a closed-form expression for the reflected optical power related to the location and orientation of the retroreflector, and validate the theory by experiments. The characterization of received optical power is applied to a received signal strength indicator and trilateration based localization algorithm. Extensive experiments demonstrate centimeter-level location accuracy and single-digit angular error.

Identifier

85056156047 (Scopus)

ISBN

[9781538641286]

Publication Title

Proceedings IEEE INFOCOM

External Full Text Location

https://doi.org/10.1109/INFOCOM.2018.8485817

ISSN

0743166X

First Page

1025

Last Page

1033

Volume

2018-April

This document is currently not available here.

Share

COinS