Low-Power Neuromorphic Hardware for Signal Processing Applications: A review of architectural and system-level design approaches
Document Type
Article
Publication Date
11-1-2019
Abstract
Machine learning has emerged as the dominant tool for implementing complex cognitive tasks that require supervised, unsupervised, and reinforcement learning. While the resulting machines have demonstrated in some cases even superhuman performance, their energy consumption has often proved to be prohibitive in the absence of costly supercomputers. Most state-of-the-art machine-learning solutions are based on memoryless models of neurons. This is unlike the neurons in the human brain that encode and process information using temporal information in spike events. The different computing principles underlying biological neurons and how they combine together to efficiently process information is believed to be a key factor behind their superior efficiency compared to current machine-learning systems.
Identifier
85074460168 (Scopus)
Publication Title
IEEE Signal Processing Magazine
External Full Text Location
https://doi.org/10.1109/MSP.2019.2933719
e-ISSN
15580792
ISSN
10535888
First Page
97
Last Page
110
Issue
6
Volume
36
Grant
H2020
Fund Ref
Semiconductor Research Corporation
Recommended Citation
Rajendran, Bipin; Sebastian, Abu; Schmuker, Michael; Srinivasa, Narayan; and Eleftheriou, Evangelos, "Low-Power Neuromorphic Hardware for Signal Processing Applications: A review of architectural and system-level design approaches" (2019). Faculty Publications. 7246.
https://digitalcommons.njit.edu/fac_pubs/7246
